A ug 2 00 3 Legendre Integrators , Post - Processing and Quasiequilibrium

نویسندگان

  • Alexander N. Gorban
  • Pavel A. Gorban
  • Iliya V. Karlin
چکیده

A toolbox for the development and reduction of the dynamical models of nonequilibrium systems is presented. The main components of this toolbox are: Legendre integrators, dynamical postprocessing, and thermodynamic projector. Thermodynamic projector is the tool to transform almost arbitrary anzatz to a thermodynamically consistent model, the postprocessing is the cheapest way to improve the solution, obtained by the Legendre integrators. Legendre Integrators give the opportunity to solve linear equations instead of nonlinear ones for quasiequilibrium (MaxEnt) approximations. The essentially new element of this toolbox, the method of thermodynamic projector, is demonstrated on application to FENE-P model of polymer kinetic theory. The multy-peak model of polymer dynamics is developed. The simplest example, discussed in details, is the two peaks model for Gaussian manifold instability in polymer dynamics. This type of models opens a way to create the computational models for the “molecular individualism”. ∗[email protected], ∗∗[email protected], ∗∗∗[email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendre integrators , post - processing and quasiequilibrium

A toolbox for the development and reduction of the dynamical models of nonequilibrium systems is presented. The main components of this toolbox are: Legendre integrators, dynamical post-processing, and the thermodynamic projector. The thermodynamic projector is the tool to transform almost any anzatz to a thermodynamically consistent model. The post-processing is the cheapest way to improve the...

متن کامل

Recovering Fourier coefficients of modular forms and factoring of integers

X iv :1 00 8. 50 35 v1 [ m at h. N T ] 3 0 A ug 2 01 0 RECOVERING FOURIER COEFFICIENTS OF MODULAR FORMS AND FACTORING OF INTEGERS Sergei N. Preobrazhenskĭi It is shown that if a function defined on the segment [−1, 1] has sufficiently good approximation by partial sums of the Legendre polynomial expansion, then, given the function’s Fourier coefficients cn for some subset of n ∈ [n1, n2], one c...

متن کامل

. N A ] 1 8 A ug 2 00 5 GENERALIZED GALERKIN VARIATIONAL INTEGRATORS

Abstract. We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuratio...

متن کامل

ar X iv : m at h - ph / 0 10 80 19 v 1 2 4 A ug 2 00 1 N - LEVEL QUANTUM SYSTEMS AND LEGENDRE FUNCTIONS ∗

An excitation dynamics of new quantum systems of N equidistant energy levels in a mono-chromatic field has been investigated. To obtain exact analytical solutions of dynamic equations an analytical method based on orthogonal functions of a real argument has been proposed. Using the orthogonal Legendre functions we have found an exact analytical expression for a population probability amplitude ...

متن کامل

ar X iv : m at h - ph / 0 21 10 28 v 2 1 1 N ov 2 00 3 Geometric integrators and nonholonomic mechanics

A geometric derivation of nonholonomic integrators is developed. It is based in the classical technique of generating functions adapted to the special features of nonholonomic systems. The theoretical methodology and the integrators obtained are different from the obtained in [12]. In the case of mechanical systems with linear constraints a family of geometric integrators preserving the nonholo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003